Leonardo da Vinci már 400 évvel Einstein előtt kezdett rájönni a gravitáció titkaira
The woman who painted the future
Plato’s cube and the natural geometry of fragmentation
Fantasztikus társasjátékot ihletett a hírhedt négyszín-tétel és a Sagrada Família
Sabine Hossenfelder: Schrödinger's Cat (music video)
Farkas Róbert – Eszes Róka-sorozat I., II., III. (könyvkritika)
Jeff Cardello: History of grids: from the printing press to modern web design
"Infinite Patterns" (Sacred Geometry)
Sam Illingworth: A sonnet to science (könyv)
500 Japanese Woodblock Prints from Van Gogh’s Collection
Penumbra. An art-science mandala incorporating a lunar eclipse pattern.
Kijavították a Gulliver utazásai tévedéseit
Artist Paints With A Sink Strainer
Soren Wolff: Fizika és művészet
Wassily Kandinsky (1866–1944) (videó)
The Woman Who Found Abstraction Before the Modernists: Hilma af Klint
Kristine Mitchell: Coloring Book Celebrates Mathematical Beauty of Nature with Hand-Drawn Golden Ratio Illustrations
Van Gogh's Starry Night painted on dark water by Garip Ay
Báldi Tamás – Papp Gábor – Weiszburg Tamás: Mozart „geológus” barátai
Longa Anna: A harang
Schiller Róbert: A nyelv hatalma
__ __ : A szenvedelmes kémikus
__ __ : Heisenberg a szépségről
__ __ : Scroll lock és az olvasás művészete
__ __ : Tengerész a laboratóriumban
Simonyi Károly: „…az egek és tengerek minden jelensége”
__ __ : „Az én módszerem jobb, mint a szokásos”
__ __ : „…én mégis egy könyvet írtam”
__ __ : „Láttam egy üstököst visszatérni…”
__ __ : „Merj tudni!”
__ __ : „Ti jobban féltek…”
Tóth Imre: De interpretatione. I–II. rész Nemeuklideszi geometria: két évezred kommentárja Eukleidészhez. = Holmi IX, X (1998), 9–10, 1240–1257, 1378–1396. p.
A világ- és magyar irodalomban gyakoriak a pszichiátriai tüneteket,
betegségeket leíró művek vagy műrészletek. Ezekből válogatták és látták
el szakmai magyarázattal a szemelvényeket a kötet pszichiáter szerzői.
Moretti Magdolna Németh Attila: „…ki szépen kimondja a rettenetet, azzal föl is oldja". PSYrodalmi szöveggyűjtemény. Budapest: Medicina Könyvkiadó, 2016.
A kötetben összegyűjtött rövidebb-hosszabb írások a szerző szakterületét, a fizikai kémia tudományát, csak érintik, vagy nem is érintik. Néhány cikk elárulja ugyan az ismeretterjesztés nehezen elfojtható szándékát, a legtöbbje azonban arról szól, ami általánosabb kérdésekkel: a humán tudományok, a művészet vagy a társadalom egyik-másik jelenségével kapcsolatban jutott a szerző eszébe. Aki, ha ilyesmiről írt is, nem óhajtotta elfelejteni azt, hogy vegyész. Az írások tehát a gondolkodás egymástól távolfekvőnek látszó területeiről, esetleg ezek kapcsolatairól szólnak. Nem próbálják meg azonban áthidalni a sokat emlegetett szakadékot a két kultúra között.
A szerző véleménye szerint ugyanis csak egy kultúra van.
Schiller Róbert: Egy kultúra között. Budapest: Typotex Kiadó, 2004.
Petrosz bácsit csak „kész csődtömegnek” nevezik a családjában: öccsei szorgosan dolgoznak, vezetik az apjuktól örökölt gyárat, miközben ő Athén külvárosában él, kertészkedik, néha sakkozik… egyszóval nem csinál semmi hasznosat.
S hogy mi köze lehet Petrosz bácsinak a Goldbach-sejtéshez, a matematika egyik híres megoldatlan problémájához, amellyel immár majd’ három évszázada küszködnek hasztalan a legnagyobb matematikusok?
Ennek a különös kapcsolatnak a titkát deríti ki Petrosz bácsi unokaöccse, s közben bepillanthat a magas matematika rejtélyes világába, ahol nemcsak bizonyítható vagy bizonyíthatatlan tételeket talál, hanem különös, gyakran tragikus emberi sorsokat is. Doxiadisz regényében a XX. század több nagy matematikusa is felbukkan: Hardy, Littlewood, Ramanujan, Gödel és mások – olyan emberek, akik, akárcsak Petrosz bácsi, egészen közel jutottak azokhoz a titkokhoz, amelyek megismerésére az ember talán nem is hivatott…
Aposztolosz Doxiadisz 1963-ban született Ausztráliában,
majd Athénban nőtt fel. Tizenöt éves korában felvették
a New York-i Columbia Egyetemre, miután egy eredeti
meglátásokat tartalmazó tanulmányt juttatott el
a Matematikai Tanszékre. A matematikai diploma megszerzése
és a párizsi École Pratique Des Hautes Études-ben
végzett posztgraduális munka után azonban film-
és színházi rendező, műfordító és író lett. Görög
nyelven írt regényeit saját maga fordítja angolra.
A Petrosz bácsi és a Goldbach-sejtés
több mint húsz országban jelent meg nagy sikerrel.
Doxiadisz, Aposztolosz: Petrosz bácsi és a Goldbach-sejtés. Budapest: Európa, 2004.
A könyvben Goethe nevezetes botanikai tanulmányát
adjuk közre, olyan szövegek kíséretében, melyek
megvilágítják a goethei szemléletmód kialakulását
és mibenlétét. A Növények metamorfózisa
1790-ben jelent meg Goethe élete végéig foglalkozott
a növények életének törvényszerűségeivel. Lényében
tudós és művész egyesült, szerteágazó érdeklődése
szinte minden jelenséget felölelt, amit a természet
az ember elé tár. A könyv négy fő részből tevődik
össze: Goethe A növények alakváltozása
című verséből (Jánosy István kitűnő fordításában),
A növények metamorfózisa című tanulmányából,
Rudolf Steinernek a goethei mű keletkezéséről szóló
írásából és végül Andreas Suchantke biológus és
természetkutató írásából, amely a metamorfózis-tan
Goethe utáni utóéletéből ad ízelítőt. A könyv végén
Herczeg Ágnes, a Pagony Táj- és Kertépítész Iroda
munkatársa ír találkozásáról a goethei szemléletmóddal.
Goethe, J. W.: A növények metamorfózisa. (Die Metamorphose der Pflanze). Pisztráng Kör, 2005.
A gondolkodás lélektanának a tudattalan lelki
élet eddig legkicsiszoltabb nagyítóüvegére, a lélekelemzési
vizsgálómódra is szüksége van. Minden lelki jelenség,
mely a tudattalannal érintkezik, pszichoanalitikusan
vizsgálható és ennélfogva minden gondolkodási jelenség
is, amennyiben ennek a feltételnek megfelel. Ha
egy logikus gondolatsorra ez a feltétel a gondolat
érintkezése a tudattalannal nem is mindig érvényes,
új és mély gondolat termelése alig képzelhető el
az egész egyéniségnek, így egyszersmind a tudattalan
lelki erőknek, latba vetése nélkül. (Előszó)
Hermann Imre: Bolyai János. Egy gondolat születésének lélektana. Budapest: Animula Kiadó, 2007. (Hermann Imre sorozat.)
Kedves humán szakos vagy egyszerűen csak „humán
beállítottságú” Olvasó!
Bizonyára emlékszik még a középiskolai fizikaórák megpróbáltatásaira. Golyók gurultak, metronómok kattogtak, huzalok tekeregtek, izzók villantak fel és aludtak ki. A tanár titokzatos berendezések mögött állt, kapcsolókat csavargatott, mutatók lengtek. A vetítővásznon sötét és világos, esetleg színes sávok látszódtak. Ez még akár szórakoztató is lehetett, de aztán! Számok jelentek meg a táblán csinos táblázatokba rendezve, majd megszületett a képlet! És lehetett számolni, hány karácsonyfaizzót kell sorba kötni ahhoz, hogy ne égjenek ki, vagy hány héliumatom van a tartályban, ha 105 Pa nyomáson 320 K a hőmérséklete. És mindig akadtak az osztályban, többnyire ugyanazok, akik tudták, melyik képletet kell elővenni, és melyik betű helyébe melyik számot kell írni, és mi történik, ha a kondenzátor kapacitását megváltoztatjuk.
Mennyivel más volt a magyar- vagy történelemóra! Milyen izgalmas volt megfejteni egy-egy vers értelmét, felfedezni, hogy a költő vagy író milyennek látja a világot, hogyan döbbent rá arra, hogy én milyennek látom a világot, és mindezt milyen eszközökkel éri el. És ahány mű, annyi világ! Vagy kideríteni, hogy egy történelmi esemény mögött milyen rejtett folyamatok zajlottak, és miért éppen az történt, ami, és nem más.
Kedves reálszakos vagy egyszerűen csak „természettudományos beállítottságú” olvasó!
Bizonyára emlékszik még a középiskolai magyarórákra. Szegény vers bonckés alá került, mindenféle költői eszközök bukkantak fel, metaforák, szinesztéziák és hasonlók. Ezekből messzemenő következtetéseket lehetett levonni, amelyek megalapozottsága, úgy tűnt, a többség számára nem volt kérdéses. Vagy ha mégis, többféle értelmezést sikerült találni, ami éppen a mű értékét növelte.
Mennyivel más volt a fizikaóra! Világos, egyértelmű kérdésekre világos, egyértelmű válaszokat lehetett kapni. Ezek a válaszok azonban nem szubjektív értelmezések eredményeképpen születtek; objektív adatok közötti, matematikai bizonyossággal leírható összefüggések voltak. És egyetlen ilyen formula a konkrét jelenségek végtelen sokaságára érvényes az idők végezetéig, függetlenül attól, hogy ki mit gondol róla.
Nos, Horányi Gábor könyve arról győz meg bennünket, hogy minden másképp van. Régi közhely „két kultúráról” beszélni, és lassan ugyanilyen régi közhely ezt cáfolni. De amíg saját tapasztalataink alapján nem győződünk meg arról, hogy az értelem ugyanarra törekszik, akár természettudományról, akár filozófiáról vagy művészetről beszélünk, ez a cáfolat csak üres szólam marad. Ez a könyv ezt a tapasztalatot segít megszerezni.
Három felnőtt – a fizikus, a filozófus és az író – és két diák beszélget. Fizikáról beszélgetnek, mégsem a fizika a valódi főszereplő. Vagy mégis? Egyáltalán, mi is a fizika, amelyre művelői olyan büszkék, és amelynek segítségével a kozmosz és az elemi részecskék végső titkait fürkésszük (ha vannak ilyenek egyáltalán)? Valóban mond-e valamit a tudomány arról a világról, amelyben élünk, és főleg, megértheti-e ezt a mondanivalót a laikus is? Mit jelent az, hogy értünk valamit? Vajon a fizikusok tényleg értik a titokzatos matematikai hieroglifáik által leírt jelenségeket, törvényszerűségeket? Vajon csak a mi kedvünkért gyártanak különböző értelmezéseket, vagy maguknak is magyarázzák a magyarázhatatlant? Lehet, hogy ők is csak azt teszik, amit Italo Calvino regényhősei „az egymást keresztező sorsok kastélyában”: ugyanazokat a kártyalapokat különböző sorrendbe rakosgatva, egyetlen szó nélkül, különböző történeteket próbálnak elmesélni. De miért mindig ugyanazok a lapok bukkannak elő? Honnan vannak ezek?
Ezek az izgalmas kérdések mintegy mellesleg, néha burkoltan, de törvényszerűen merülnek fel a könyvbeli beszélgetés során. Maguk a fizikai jelenségek, amelyekről szó esik, legalább ilyen izgalmasak. És ha az olvasó nem pusztán a fizikára kíváncsi, hanem gondolkodásunk és a fizika viszonyára is, akkor nem is olyan nehezen érthetőek. Más értelemben viszont nehéz feladat áll előttünk: mindennapi, megszokott, biztosnak hitt fogalmainkat kell felülvizsgálnunk. Mi lehetne egyértelműbb annál, mint hogy két esemény egyidejűleg történik vagy sem? Vagy hogy valami hullámzik vagy száguldozik? Márpedig a fény vagy akár az elektron éppen erre figyelmeztet: Vigyázz! A kérdéseidtől függ, hogy mit válaszolok! Ha így kérdezel, a hullámarcomat mutatom, ha úgy, részecskejelmezt öltök.
Milyen is hát az elektron valójában? Felváltva hullám és részecske, vagy mindig mind a kettő? Akkor miért csak az egyik arcát láthatjuk, sohasem egyszerre a kettőt? Ez az elektron tulajdonságaiból adódik, vagy a mi megismerőképességünk korlátaiból?
Hasonló kérdések egész sora vetődik fel a relativitáselméletről és a kvantummechanikáról szóló beszélgetés folyamán és persze az olvasóban is. A fizikát nem tudó olvasó számára külön öröm lehet az élvezetes kóstoló e két legnehezebbnek vélt területből. A fizikát tudók ettől természetesen elesnek, de helyette elmerenghetnek azon, mit is jelent számukra a fizika értése. El tudják-e képzelni a világot olyannak, amilyennek ez a két tudományág leírja, vagy egyszerűen tudomásul vették a mindennapi szemlélet számára felfoghatatlan, ámde mégis logikus rendbe illeszthető tényeket? Különösen a fizikát oktatók számára lehet ez tanulságos, feltéve, ha nem pusztán képleteket akarnak tanítani, hanem… mit is?
A lényeg mindenképpen a kérdések feltevésének és a válaszok keresésének az öröme. Elvégre az értelem ilyesfajta „megkísértése” nem más, mint az értelem normális működése.
Bánkuti Zsuzsanna
Horányi Gábor: Beszélgetések a kvantummechanikáról, a relativitáselméletről és a megértés útjairól. Budapest: Műszaki Könyvkiadó, 1999.
A világ roppant bonyolult. Ezért gyönyörködhetünk
benne. Az élőlények csúsznak-másznak, dulakodnak
és fölfalják egymást, tüzelnek és bagzanak, önmagukhoz
hasonlókat nemzve. Az emberek vágyakoznak és szeretnek,
kételkednek és remélnek, kereskednek és lombikokat
forralnak. Közben el-eltöprengenek a világ dolgai
felett. Ezt mondják magukban: „Hogyan lehetséges
az, hogy ez a sok dolog mind itt zajlik körülöttünk?
És pont ily módon zajlik?” Erre a kérdésre aztán
általában nem tudnak válaszolni. De nagyon szeretnének.
Egy részük ekkor azt gondolja: „A mindenit, szerintem
csak egy megoldás van! Mégpedig az, hogy valakik
mozgatják ezt a díszes színtársulatot! Nem tréfából
mondom én ezt, hiszen látom, hogy minden nyüzsög
itt, bagzik és dürög.” Ők aztán segítségül hívják
a vis essentialist és az olümposziakat. Egy másik
részük pedig ezt mondja: „A kutyafáját! Miért gondolnám
én azt, hogy valamik kívülről mozgatják mindezt,
amikor még azt sem tudom pontosan, hogy mi ez a
sok minden? Semmi nem jogosít fel arra, hogy kizárjam
annak a lehetőségét, hogy mindez magától történik.
Ezt csak lustaságból tenném. Én pedig világéletemben
dolgos ember voltam.”
Jékely Gáspár: Mester, ébren vagy? Regényes párbeszéd a genetikáról, az egyedfejlődésről és az evolúcióról. Budapest: Pesti Kalligram, 2006.
Két fiatal német nekilát a világ fölmérésének a 18. század végén. Az egyikük, Alexander von Humboldt átvág az őserdőn és a sztyeppén, bejárja az Orinocót, önmagán kísérletezve mérgeket próbál ki, megszámolja a bennszülöttek fején a tetveket, bebújik a barlangokba, megmássza a vulkánokat és emberevőkkel vacsorázik. A matematikus és csillagász Carl Friedrich Gauss, aki nem tudja az életét nők nélkül élni, mégis képes a nászéjszakán kiugrani a hitvesi ágyból egy képlet lejegyezése kedvéért, Göttingenben bebizonyítja, hogy a tér görbül. A két öreg, híres és kissé bogaras ember először 1828-ban találkozik Berlinben, hogy a tudomány érdekében összefogjanak. A világot járt felfedezőnek és a szobájába zárkózó tudósnak azonban csak egy közös vonása van: a szenvedélyes tudásvágy.
Daniel Kehlmann humorral bőségesen fűszerezve, rendkívül élvezetes stílusban meséli el a két zseni életét, sikereiket és kudarcaikat, kötéltáncukat nagyság és nevetségesség határán. A világ fölmérése rafinált játék tényekkel és fikcióval; különös fantáziával, erővel és ragyogó technikával megírt filozófiai kalandregény.
Daniel Kehlmann 1975-ben született Münchenben, jelenleg
Bécsben él. A fiatal német irodalom legnagyobb tehetségeként
számon tartott író alig múlt harminc éves, és máris
tizenkét könyvet – köztük két hatalmas közönségsikert
– és számtalan rangos díjat tudhat magáénak. Regényei
és elbeszélései húsznál is több nyelven olvashatóak;
kritikusai világszerte kifinomultságát, intelligenciáját
és páratlan humorát dicsérik. A világ fölmérése
az utóbbi évek legnagyobb német szépirodalmi sikere,
mely rekordhosszúságú ideig vezette a sikerlistákat,
s egy év alatt több mint hatszázezer példányban
kelt el.
Kehlmann, Daniel: A világ fölmérése (Die Vermessung der Welt). Budapest: Magvető Kiadó, 2006.
„Kezdetben puszta vala minden, és J. H. W. Conway elkezde számokat teremteni. Mondá Conway: Legyen két szabály, amely létrehozza az összes számokat, kicsiket és nagyokat egyaránt, s az első szabály ez legyen: Minden egyes szám feleljen meg előzőleg megteremtett számok két halmazának olyképpen, hogy a bal felőli halmaz egyetlen eleme se legyen nagyobb vagy egyenlő, mint a jobb felőli halmaz tetszőleges eleme. És a második szabály ez legyen: Valamely szám akkor és csak akkor neveztesség kisebb vagy egyenlőnek valamely másik számnál, ha az első szám bal felőli halmazának egyetlen eleme sem nagyobb vagy egyenlő a második számnál, és a második szám jobb felőli halmazának egyetlen eleme sem kisebb vagy egyenlő az első számnál. És megvizsgálá Conway a két szabályt, amit alkotott vala, és ímé igen jók valának.”
Ezeket a, ha nem is mózesi, de conwayi alapigazságokat
vésette kőtáblába Donald Knuth írói képzelete –
fontosságukat kiemelendő –, hogy belőlük mint axiómákból
kiindulva hőseivel kihámoztassa a számok és rendszámok
egységes, ám mégis egyszerű elméletét. Alice és
Bill – a két szereplő – maguk járják végig a felfedezés
útjait és tévútjait, élik meg sikereit és buktatóit.
Ez a kis könyv antitankönyv. Szerzőjének célja,
hogy megmutassa, oktatás és kutatás egysége igenis
megteremthető.
Knuth, Donald Erwin: Számok valóson innen és túl (Surreal Numbers). Budapest: Gondolat, 1987.
A könyv a nagysikerű pszirodalmi szöveggyűjtemény,
a „Ki szépen kimondja a rettenetet, azzal
föl is oldja” folytatása, de ezúttal a gyermek-
és ifjúkori pszichés kórképek feldolgozására került
sor, mivel ezek száma nyugtalanítóan nő. Szakemberként
és magánemberként is sűrűn hangoztatjuk, hogy a
mai gyerekeknek, serdülőknek – legyen bár számtalan
lehetőségük, anyagi biztonságuk – sokkal nehezebb
felnőni, mint szüleik korosztályának. Korai felnőttségre
kényszerített vagy felnőni nem akaró fiatalok, hol
megrészegülve a végtelen lehetőségektől, hol pedig
a kétségekben mélyre zuhanva, kérdéseket tesznek
fel és válaszokat várnak. Tapogatóznak, hol van
az egyensúly a konzervatív értékek és a versenyszféra
által diktált követelmények között.
Moretti Magdolna – Németh Attila: „Figyelj rám, mintha jel volnék!” Gyermek – lélek – tükör. Budapest: Medicina Könyvkiadó, 2008.
A felfedezések korában a „földrajzi hosszúság problémája” jelentette a legnagyobb tudományos kihívást. A hosszúsági fok meghatározásának képessége híján a tengerészek a szó szoros értelmében elvesztek a tengeren, amint eltűnt szemük elől a szárazföld. A hajók a parti sziklákon futottak zátonyra, az ismert tengeri utak használói pedig könnyű prédát jelentettek a kalózoknak.
1714-ben az angol parlament óriási jutalmat ajánlott fel annak, akinek a földrajzi hosszúságot meghatározó metódusa sikeresnek bizonyul. A tudományos elit – Galileitől Sir Isaac Newtonig – az égboltot térképezték fel, abbéli bizonyosságukban, hogy a válasz a csillagok közt rejlik. Egyetlen ember, John Harrison mert csak mechanikus megoldásban hinni – egy olyan órában, mely a tengereken olyan precízen méri az időt. amire addig még a szárazföldön se igen volt példa. És megkezdődött a verseny…
Dava Sobel a The New York Times díjnyertes,
volt tudományos tudósítója, olyan magazinok részére
ír tudományos cikkeket, mint az Audubon,
a Discover, a Life és
a The New Yorker.
Sobel, Dava: Hosszúsági fok. Egy magányos géniusz igaz története, aki megoldotta kora legnagyobb tudományos problémáját (Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time). Pécs: Alexandra Kiadó, 1995.
Egy nagypapa sztochasztikáról mesél unokáinak. A sztochasztika a véletlen tudománya. A bonyolult tudományos témát a könnyed, posztmodernnek tekinthető szövegalkotás teszi különössé.
Két részből áll e könyv, az első (kisebb harmada) feszes, bizonyos mércék szerint elfogadható szövegben a téma burkát vezeti fel a szerző. Ezek a véletlen rejtelmeiből a legszükségesebbek. De aztán afféle hétfátyoltánc gyanánt önmagáról lefejtve mindenféle burkokat személyes intellektuális kalandra hívja az olvasót.
Tusnády Gábor 1965 óta az MTA Rényi Alfréd Matematikai Kutatóintézet tagja.
Kulcsszavak: matematika,
matematikatörténet, matematikafilozófia, népszerűsítő
matematika
Tusnády Gábor: Sztochasztika – Egy kaland. Budapest: TypoTex Kiadó, 2004. (Magyar tudósok sorozat.)
From back cover: Science and art come together
in Verse & Universe, a comprehensive selection
of poetic voices revealing the beauty, the precision,
the triumphs, and the destructive power inherent
in science and technology. In sections such as “Space”,
“Matter”, “Heavenly Bodies”, and “Theory and Speculation”,
80 contemporary poets contemplate the revolutions
in physics, astronomy, mathematics, chemistry, geology,
botany, biology, and medicine. Their words celebrate
our curiosity and inventiveness, as well as our
delight in the act of discovery, as they turn the
revelations of science into poetry and capture the
nature and spirit of modern scientific inquiry.
A few of the outstanding poets in the collection
include Loren Eiseley, Jorie Graham, Emily Hiestand,
Howard Nemerov, Pattiann Rogers, and Charles Simic.
Verse & Universe: Poems about Science and Mathematics. Edited by Kurt Brown. Milkweed Editions, 1998.
Brassói Fuchs Herman: Babits és a „mesés halgyíkok”. = Természet Világa 124 (1993) 9. 409. p.
Császár Lili: Fizika a bélyegeken. = Fizikai Szemle XXI (1971) 5. 157–162. p.
Deutsch, Diana: Zenei paradoxonok. = Tudomány VIII (1992) 10. 66–71. p.
Dézsi Zoltán–Dézsi Zoltánné: Az atomfizika és a filatélia. = Fizikai Szemle XXVI (1976). 381– p.
Gánti Tibor: Szőke Péter (1910–1994). = Természet Világa 125 (1994) 10. 466–468. p.
Halász László: Művészet és tudomány – Pszichológiai nézőpontból. = Magyar Tudomány CII – Új folyam: XL (1995) 6. 721–727. p.
Hudoba György et al: Sajnovics János – matematikus, csillagász, nyelvtudós. = Természet Világa 124 (1993) 9. 427. p.
Kádár Zoltán: A tengerek titkainak első megfigyelői. = Természet Világa 130 (1999) 2. 92–93. p.
Kőlcsei Tamás: Növényvédelem az ókorban. = Természet Világa 122 (1991) 4, 184–186. p.
Schiller Róbert: A boldogság és a szerelem
termodinamikája.
= Természet Világa
126 (1995) 11, 512. p.
__ __ : A gyalogjárás statisztikus mechanikája.
= Természet Világa
126 (1995) 10, 465. p.
__ __ : A sátán kertje.
= Természet Világa
127 (1996) 5, 225. p.
__ __ : A természettudós Schelley.
= Természet Világa
127 (1996) 6, 271. p.
__ __ : A tömegmegmaradás művészete.
= Természet Világa
127 (1996) 9, 410. p.
__ __ : A tudós és a szépirodalom.
= Természet Világa
127 (1996) 1, 32. p.
__ __ : Az elemi töltés poézise.
= Természet Világa
128 (1997) 4, 173. p.
__ __ : Egy író sci-fit ír.
= Természet Világa
128 (1997) 2, 83. p.
__ __ : Ércnél maradandóbb rothadás.
= Természet Világa
127 (1996) 7, 321. p.
__ __ : Hang és szobor.
= Természet Világa
127 (1996) 2, 81. p.
__ __ : Ihletett tudós?
= Természet Világa
128 (1997) 1, 32–33. p.
__ __ : Karinthy a tudomány ellen.
= Természet Világa
127 (1996) 11, 514. p.
__ __ : Kis szöveggyűjtemény a tudós hiúságáról.
= Természet Világa
124 (1993) 8, 345. p.
__ __ : Miért haragszik Ortega a tudósokra?
= Természet Világa
126 (1995) 12, 560. p.
__ __ : Senki se kortársa saját magának.
= Természet Világa
128 (1997) 3, 128. p.
Szabadváry Ferenc–Orlai Györgyné: A méter kalandos megszületése. = Természettudományi Közlöny 127 (1996) 6, 277–279. p.
Tardent, Oierre: Művészet a tudomány szolgálatában. = Természettudományi Közlöny 127 (1996) 1, 43–44. p.
Tolnai Borbála: A citrusfélék kultúrtörténete. = Természet Világa 1998 8 [Diákpályázat-melléklet].